
Statistical Inference 
Test Set 2 

 
1. Let 1 2, ,..., nX X X be a random sample from a ( , 2 )U θ θ−  population. Find MLE of θ . 
2. Let 1 2, ,..., nX X X be a random sample from a Pareto population with density
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3. Let 1 2, ,..., nX X X be a random sample from a ( , )U θ θ− population. Find the MLE of θ . 
4. Let 1 2, ,..., nX X X be a random sample from a lognormal population with density 

2
2

1 1( ) exp (log ) , 0.
22X ef x x x

x
µ

σσ π
 = − − > 
 

Find the MLEs of µ  and 2σ . 

5. Let 1 1 2 2( , ), ( , ),..., ( , )n nX Y X Y X Y be a random sample from a bivariate normal population 
with parameters 2 2

1 2 1 2, , , ,µ µ σ σ ρ . Find the MLEs of parameters.  
6. Let 1 2, ,..., nX X X be a random sample from an inverse Gaussian distribution with density 
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. Find the MLEs of parameters. 

7. Let 1 2( , ,..., )kX X X have a  multinomial distribution with parameters 
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8. Let one observation be taken on a discrete random variable X with pmf ( | )p x θ , given 
below, where {1,2,3}Θ = Find the MLE of .θ  
 

  θ  
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 1 2 3 
1 1/2 1/4 1/4 
2 3/5 1/5 1/5 
3 1/3 1/2 1/6 
4 1/6 1/6 2/3 

 
9. Let 1 2, ,..., nX X X be a random sample from the truncated double exponential distribution 

with the density 
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Find the MLE of .θ  
 
10. Let 1 2, ,..., nX X X be a random sample from the Weibull distribution with the density 
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       Find MLE of α when β is known. 
 
 
 
 



Hints and Solutions 
 

1. The likelihood function is (1) (2) ( )
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2. The likelihood function is (1)
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with respect to α when α takes its maximum. Hence (1)ˆML Xα = . Using this we can 

rewrite the likelihood function as (1)
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 The log likelihood is                                      
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with respect to β  and we get 
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3. Arguing as in Sol. 1, we get ( )(1) ( ) 1
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4. Directly maximizing the log-likelihood function with respect to 2 and µ σ , we get 
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5. The maximum likelihood estimators are given by
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6. The maximum likelihood estimators are given by 
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7. The maximum likelihood estimators are given by 
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