Statistical Inference Test Set 2

- 1. Let $X_1, X_2, ..., X_n$ be a random sample from a $U(-\theta, 2\theta)$ population. Find MLE of θ .
- 2. Let $X_1, X_2, ..., X_n$ be a random sample from a Pareto population with density $f_X(x) = \frac{\beta \alpha^{\beta}}{r^{\beta+1}}, x > \alpha, \alpha > 0, \beta > 2$. Find the MLEs of α, β .
- 3. Let $X_1, X_2, ..., X_n$ be a random sample from a $U(-\theta, \theta)$ population. Find the MLE of θ .
- 4. Let $X_1, X_2, ..., X_n$ be a random sample from a lognormal population with density

$$f_X(x) = \frac{1}{\sigma x \sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} (\log_e x - \mu)^2\right\}, x > 0.$$
 Find the MLEs of μ and σ^2 .

- 5. Let $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ be a random sample from a bivariate normal population with parameters $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$. Find the MLEs of parameters.
- 6. Let $X_1, X_2, ..., X_n$ be a random sample from an inverse Gaussian distribution with density $\begin{pmatrix} \lambda \\ \lambda \end{pmatrix}^{1/2} \begin{bmatrix} \lambda (x-\mu)^2 \end{bmatrix}$

$$f_X(x) = \left(\frac{\lambda}{2\pi x^3}\right)^{-1} \exp\left\{-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right\}, x > 0$$
. Find the MLEs of parameters.

7. Let $(X_1, X_2, ..., X_k)$ have a multinomial distribution with parameters $n = \sum_{i=1}^{k} X_i$,

$$p_1, \ldots, p_k; 0 \le p_1, \ldots, p_k \le 1, \sum_{j=1}^{k} p_j = 1$$
, where *n* is known. Find the MLEs of p_1, \ldots, p_k .

8. Let one observation be taken on a discrete random variable *X* with pmf $p(x | \theta)$, given below, where $\Theta = \{1, 2, 3\}$ Find the MLE of θ .

		θ		
		1	2	3
	1	1/2	1/4	1/4
х	2	3/5	1/5	1/5
	3	1/3	1/2	1/6
	4	1/6	1/6	2/3

9. Let $X_1, X_2, ..., X_n$ be a random sample from the truncated double exponential distribution with the density

$$f_X(x) = \frac{e^{-|x|}}{2(1 - e^{-\theta})}, |x| < \theta, \theta > 0.$$

Find the MLE of θ .

10. Let $X_1, X_2, ..., X_n$ be a random sample from the Weibull distribution with the density $f_x(x) = \alpha \ \beta x^{\beta-1} e^{-\alpha x^{\beta}}, \ x > 0, \alpha > 0, \beta > 0.$ Find MLE of α when β is known.

Hints and Solutions

- 1. The likelihood function is $L(\theta, \underline{x}) = \frac{1}{(3\theta)^n}, -\theta < x_{(1)} \le x_{(2)} \le \dots \le x_{(n)} < 2\theta, \theta > 0$. Clearly it is maximized with respect to θ , when θ takes its infimum. Hence, $\hat{\theta}_{ML} = \max\left(-X_{(1)}, \frac{X_{(n)}}{2}\right)$.
- 2. The likelihood function is $L(\alpha, \beta, \underline{x}) = \frac{\beta^n \alpha^{n\beta}}{(\prod_{i=1}^n x_i)^{\beta+1}}, x_{(1)} > \alpha, \alpha > 0, \beta > 2$. *L* is maximized

with respect to α when α takes its maximum. Hence $\hat{\alpha}_{ML} = X_{(1)}$. Using this we can rewrite the likelihood function as $L'(\beta, \underline{x}) = \frac{\beta^n \{x_{(1)}\}^{n\beta}}{(\prod_{i=1}^n x_i)^{\beta+1}}, \beta > 2$. The log likelihood is $\log L'(\beta, \underline{x}) = n \log \beta + n\beta \log x_{(1)} - (\beta + 1) \log \left(\prod_{i=1}^n x_i\right)$. This can be easily maximized

with respect to β and we get $\hat{\beta}_{ML} = \left[\frac{1}{n}\sum \log \frac{X_{(i)}}{X_{(1)}}\right]^{-1}$.

- 3. Arguing as in Sol. 1, we get $\hat{\theta}_{ML} = \max\left(-X_{(1)}, X_{(n)}\right) = \max_{1 \le i \le n} |X_i|$.
- - $\hat{\mu}_1 = \bar{X}, \, \hat{\mu}_2 = \bar{Y}, \, \hat{\sigma}_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2, \, \hat{\sigma}_2^2 = \frac{1}{n} \sum_{i=1}^n (Y_i \bar{Y})^2, \, \hat{\rho} = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})(Y_i \bar{Y}) / (\hat{\sigma}_1 \hat{\sigma}_2).$
- 6. The maximum likelihood estimators are given by

$$\hat{\mu}_{ML} = \overline{X}, \, \hat{\lambda}_{ML} = \left\lfloor \frac{1}{n} \left(\sum_{i=1}^{n} \frac{1}{X_i} - \frac{1}{\overline{X}} \right) \right\rfloor^{-1}$$

7. The maximum likelihood estimators are given by

$$\hat{p}_1 = \frac{X_1}{n}, \cdots, \hat{p}_k = \frac{X_k}{n}$$

8.
$$\hat{\theta}_{ML} = 1$$
, if $x = 1, 2$
= 2, if $x = 3$
= 3, if $x = 4$

9. $\hat{\theta}_{ML} = \max\left(-X_{(1)}, X_{(n)}\right) = \max_{1 \le i \le n} |X_i|.$

10.
$$\hat{\alpha}_{ML} = \frac{n}{\sum x_i^{\beta}}$$