Statistical Inference

Test Set 2

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $U(-\theta, 2 \theta)$ population. Find MLE of θ.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a Pareto population with density $f_{X}(x)=\frac{\beta \alpha^{\beta}}{x^{\beta+1}}, x>\alpha, \alpha>0, \beta>2$. Find the MLEs of α, β.
3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $U(-\theta, \theta)$ population. Find the MLE of θ.
4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a lognormal population with density $f_{X}(x)=\frac{1}{\sigma x \sqrt{2 \pi}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\log _{e} x-\mu\right)^{2}\right\}, x>0$. Find the MLEs of μ and σ^{2}.
5. Let $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be a random sample from a bivariate normal population with parameters $\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho$. Find the MLEs of parameters.
6. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an inverse Gaussian distribution with density $f_{X}(x)=\left(\frac{\lambda}{2 \pi x^{3}}\right)^{1 / 2} \exp \left\{-\frac{\lambda(x-\mu)^{2}}{2 \mu^{2} x}\right\}, x>0$. Find the MLEs of parameters.
7. Let $\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ have a multinomial distribution with parameters $n=\sum_{i=1}^{k} X_{i}$, $p_{1}, \ldots, p_{k} ; 0 \leq p_{1}, \ldots, p_{k} \leq 1, \sum_{j=1}^{k} p_{j}=1$, where n is known. Find the MLEs of p_{1}, \ldots, p_{k}.
8. Let one observation be taken on a discrete random variable X with pmf $p(x \mid \theta)$, given below, where $\Theta=\{1,2,3\}$ Find the MLE of θ.

		θ		
x		1	2	3
	1	$1 / 2$	$1 / 4$	$1 / 4$
	2	$3 / 5$	$1 / 5$	$1 / 5$
	3	$1 / 3$	$1 / 2$	$1 / 6$
	4	$1 / 6$	$1 / 6$	$2 / 3$

9. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the truncated double exponential distribution with the density

$$
f_{X}(x)=\frac{e^{-|x|}}{2\left(1-e^{-\theta}\right)},|x|<\theta, \theta>0 .
$$

Find the MLE of θ.
10. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the Weibull distribution with the density $f_{X}(x)=\alpha \beta x^{\beta-1} e^{-\alpha x^{\beta}}, x>0, \alpha>0, \beta>0$.
Find MLE of α when β is known.

Hints and Solutions

1. The likelihood function is $L(\theta, \underline{x})=\frac{1}{(3 \theta)^{n}},-\theta<x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}<2 \theta, \theta>0$. Clearly it is maximized with respect to θ, when θ takes its infimum. Hence, $\hat{\theta}_{M L}=\max \left(-X_{(1)}, \frac{X_{(n)}}{2}\right)$.
2. The likelihood function is $L(\alpha, \beta, \underline{x})=\frac{\beta^{n} \alpha^{n \beta}}{\left(\prod_{i=1}^{n} x_{i}\right)^{\beta+1}}, x_{(1)}>\alpha, \alpha>0, \beta>2 . L$ is maximized with respect to α when α takes its maximum. Hence $\hat{\alpha}_{M L}=X_{(1)}$. Using this we can rewrite the likelihood function as $L^{\prime}(\beta, \underline{x})=\frac{\beta^{n}\left\{x_{(1)}\right\}^{n \beta}}{\left(\prod_{i=1}^{n} x_{i}\right)^{\beta+1}}, \beta>2$. The log likelihood is $\log L^{\prime}(\beta, \underline{x})=n \log \beta+n \beta \log x_{(1)}-(\beta+1) \log \left(\prod_{i=1}^{n} x_{i}\right)$. This can be easily maximized with respect to β and we get $\hat{\beta}_{M L}=\left[\frac{1}{n} \sum \log \frac{X_{(i)}}{X_{(1)}}\right]^{-1}$.
3. Arguing as in Sol. 1, we get $\hat{\theta}_{M L}=\max \left(-X_{(1)}, X_{(n)}\right)=\max _{1 \leq i \leq n}\left|X_{i}\right|$.
4. Directly maximizing the log-likelihood function with respect to μ and σ^{2}, we get

$$
\hat{\mu}_{M L}=\frac{1}{n} \sum \log X_{i}, \hat{\sigma}_{M L}^{2}=\frac{1}{n} \sum\left(\log X_{i}-\hat{\mu}_{M L}\right)^{2} .
$$

5. The maximum likelihood estimators are given by

$$
\hat{\mu}_{1}=\bar{X}, \hat{\mu}_{2}=\bar{Y}, \hat{\sigma}_{1}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}, \hat{\sigma}_{2}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}, \hat{\rho}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) /\left(\hat{\sigma}_{1} \hat{\sigma}_{2}\right) .
$$

6. The maximum likelihood estimators are given by

$$
\hat{\mu}_{M L}=\bar{X}, \hat{\lambda}_{M L}=\left[\frac{1}{n}\left(\sum_{i=1}^{n} \frac{1}{X_{i}}-\frac{1}{\bar{X}}\right)\right]^{-1}
$$

7. The maximum likelihood estimators are given by

$$
\hat{p}_{1}=\frac{X_{1}}{n}, \cdots, \hat{p}_{k}=\frac{X_{k}}{n}
$$

8. $\hat{\theta}_{M L}=1$, if $x=1,2$

$$
\begin{array}{ll}
=2, & \text { if } x=3 \\
=3, & \text { if } x=4
\end{array}
$$

9. $\hat{\theta}_{M L}=\max \left(-X_{(1)}, X_{(n)}\right)=\max _{1 \leq i \leq n}\left|X_{i}\right|$.
10. $\hat{\alpha}_{M L}=\frac{n}{\sum x_{i}^{\beta}}$
